A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
نویسندگان
چکیده
This paper investigates the six degrees of freedom (6-DOF) flight dynamics and stability of the hawkmoth Manduca sexta using a multibody dynamics approach that encompasses the effects of the time varying inertia tensor of all the body segments including two wings. The quasi-steady translational and unsteady rotational aerodynamics of the flapping wings are modeled with the blade element theory with aerodynamic coefficients derived from relevant experimental studies. The aerodynamics is given instantaneously at each integration time step without wingbeat-cycle-averaging. With the multibody dynamic model and the aerodynamic model for the hawkmoth, a direct time integration of the fully coupled 6-DOF nonlinear multibody dynamics equations of motion is performed. First, the passive damping magnitude of each single DOF is quantitatively examined with the measure of the time taken to half the initial velocity (thalf). The results show that the sideslip translation is less damped approximately three times than the other two translational DOFs, and the pitch rotation is less damped approximately five times than the other two rotational DOFs; each DOF has the value of (unit in wingbeat strokes): thalf,forward/backward = 7.10, thalf,sideslip = 17.95, thalf,ascending = 7.13, thalf,descending = 5.77, thalf,roll = 0.68, thalf,pitch = 2.39, and thalf,yaw = 0.25. Second, the natural modes of motion, with the hovering flight as a reference equilibrium condition, are examined by analyzing fully coupled 6-DOF dynamic responses induced by multiple sets of force and moment disturbance combinations. The given disturbance combinations are set to excite the dynamic modes identified in relevant eigenmode analysis studies. The 6-DOF dynamic responses obtained from this study are compared with eigenmode analysis results in the relevant studies. The longitudinal modes of motion showed dynamic modal characteristics similar to the eigenmode analysis results from the relevant literature. However, the lateral modes of motion revealed more complex behavior, which is mainly due to the coupling effect in the lateral flight states and also between the lateral and longitudinal planes of motion. The main sources of the flight instability of the hovering hawkmoth are examined as either the longitudinal instability grown from the coupled forward/backward velocity and the pitch rate, or the lateral instability grown from the coupled sideslip velocity and the roll rate.
منابع مشابه
Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Mul- tibody Dynamics Approach
This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables de...
متن کاملInsect cardioactive peptides: neurohormonal regulation of cardiac activity by two cardioacceleratory peptides during flight in the tobacco hawkmoth, Manduca sexta.
The relationship between two cardioactive neuropeptides, the cardioacceleratory peptides (CAPs), and changes in heart rate during flight was investigated in the tobacco hawkmoth, Manduca sexta. In vivo heart recordings from intact, tethered adults revealed a marked increase in heart rate associated with flying. Both anterior-to-posterior and posterior-to-anterior contraction waves showed a meas...
متن کاملFlight behaviour of the hawkmoth Manduca sexta towards unimodal and multimodal targets.
Here, we analyse the flight behaviour of the hawkmoth Manduca sexta while it approaches three different artificial flower stimuli: a clearly visible blue flower, an invisible scented flower and a flower that is both visible and scented. By tracking the moths in fine temporal detail, we find that flight towards an artificial flower differs depending on whether the stimulus is unimodal (either vi...
متن کاملA Search for Optimal Wing Strokes in Flapping Flight: Can Engineers Improve Upon Nature?
Computational modeling is used to explore the efficiency of hovering flight in a hawkmoth (Manduca Sexta). While flying insects such as hawkmoths are excellent flyers, their wing-strokes are constrained by a number of factors including anatomy, developmental requirements, biological material properties and evolutionary history. Engineered micro-aerial vehicles are not subject to similar constra...
متن کاملFlight control in the hawkmoth Manduca sexta: the inverse problem of hovering.
The inverse problem of hovering flight, that is, the range of wing movements appropriate for sustained flight at a fixed position and orientation, was examined by developing a simulation of the hawkmoth Manduca sexta. Inverse problems arise when one is seeking the parameters that are required to achieve a specified model outcome. In contrast, forward problems explore the outcomes given a specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinspiration & biomimetics
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2014